Tau Commander: Introductory Guide
D. Mackay, ParaTools, Inc.

Contents

L 1a oY L1 Tad 4 T0) s O USRS 1

DO IMItIONS .. ttetieeteeete ettt ettt e e et e et e e beeesbe e bee e b e e seeesbe e saeease e steesbeesaeenba e saeenbeeasaeeseennaaans 2

Beginning with Tau COMMANAETc.cocieriiirrieriiieiieeieereeeieesteeteeseessteesatesseessaesseesseesssessssesseenseenns 2
Getting TAU COMIMANAETccccueteeiieeiieeeiteeeiieeeiteeesteeesteessteeessseeesseesssseesssssesssseessssesssssesssseesssseesnns 2
TAU COMIMANAET SELUD ..vveeeuvreeeveerereerereeesteessteessseeessseeessessssssesssseesssssesssssessssessssssssssssssssssssssesssssees 3
Editing TAU Commander APPLICAtIONSc.cervveeriirriieriiienieeniesiteesieesieeesseessseesssessseesseessessssesssessseenns 4
Editing TAU Commander IMEaSUIEITIEIILS:c.ceeerveeerrueeesueeeseeeesseessseesssssesssseessssesssssessssessssesssssees 4
TAU Commander EXPETIIMENLSc.cceeeiereruierriuieeiieeeiieeesseeesseessseesssseesssseessssessssssssssesssssesssssesssssess 5
BUild @nd RUD ...coouiiiiieiececeeeeeeteste sttt et s it e et e s teesaeesbeebeessbeeseesssaesseasssesssessseenssanns 6
VIEWINEG DAL ..covviiiiiiiiiiiiiiiiectc e as e b e e e a e s ba e e s aae e s 6

L 2 101 0] (=R 6
g0} 1 (R 110765 1o | AT SU USRS 7
3D ViISUALIZALION ..euvvieiiiieiciiieccieeeiteeecte et e et e s vee s e aee e aeesstee s saeeesaseeessseesnsseesssaaeassaeessseeessseesnsseennns 9
Hardware counters With PAPT¥..........ooo ittt ee s vee s s vae s s aaeesnve e e aaeeessaeesnnas 11
TTACES ettt ettt ettt e e ettt e e e sttt e e s s aab e e e s sab bt e e e e ast e e e e asbaeesanssbaeeseasstaeessasaaeeeansaaeesensaaesanans 12
IMLEIMIOTY USAZEL ...eeeieuereeeeauireeeeeirteeeeeatteeesstteeeasuseeesasastteesasssteesasassaeesasssaaessssssteeessssaessssnsseesssssseeessnnns 14
L0 ettt e h bt b e b e a e bt et e e bt e bt et s ae e bt e beeat e neebesanens 15

Introduction:

TAU Commander is a powerful product to manage performance analysis activities. Software
Developers can use it to analyze software performance and determine how to optimize their software or
the compute environment the software runs on. With rapid movement forward with different types of
compute environments it is important for the software developer to understand how to effectively
utilize the computer environment, which may include multi-core or many core, SIMD execution units,
and co-processors and gpu based compute accelerators. Tau commander offers the capability to
analyze MPT*, C*, C++*, Fortran*, Python*, OpenMP*, OpenCL*, CUDA, SHMEM and more. TAU
Commander is one of the few products to collect performance analysis data simultaneously on both the
Intel Xeon Phi (KNC) and its host simultaneously. TAU Commander operates across numerous
hardware platforms, operating systems and software development environments. This guide is an
introduction to its layout and how best to use. For those who just want to run a performance profile
quickly, the TAU Commander Quick Start Guide is a recommended starting point and will quickly set
a up developer to run a hotspots profile analysis. At the time of this writing this guide is not yet posted
but expect to find it soon.

*Names and trademarks belong to their respective owners

Definitions:

The basis for Tau Commander is T-A-M: Target, Application and Measurement. This is illustrated in
Figure 1. All activities are associated around these three basic definitions. The first, target, describes
the environment where data is collected. This includes the platform the code runs on, its operating
system, CPU architecture, interconnectivity fabric, compilers, and installed software. The second is the
application. The application consists of the underlying items associated with the application - whether
the application uses MPI, OpenMP, threads, CUDA, OpenCL and such. The measurements define

Experiment =
(Target, Application, Measurement)

Figure 1 Basic Structure of Tau Commander

what will data will be collected and in what format. Even though an application uses OpenMP or MPI,
the measurements may or may not measure those items. The format of the collected information is
very important. The two basic formats are a profile or a trace. The data to be collected may include the
wallclock time, hardware performance counters, network or file I/O, time spent in OpenMP or MPI run
time libraries, etc. The developers choose attributes of the application and attributes of the target to
define the measurements. These three components — Target, Application and Measurement — form the
basis of the TAU Commander structure. In addition to that basic structure there are a couple of more
components to complete the TAU Commander interface. The first is a project. A project is the
container for the developers grouping of defined activities, settings and system environments. Last is
the experiment. An experiment consists of one target, one application and one measurement. One
experiment is active and that is what will be executed when developers collect data. When an
experiment is run and data is collected that completed data set is a trial. Developers will typically use
multiple measurement types for performance tuning, which means they will have multiple
measurements and experiments defined in their project and multiple trials to analyze. Developers may
have multiple applications in a project or they may create different projects for each application.

Beginning with Tau Commander

Getting TAU Commander

If TAU commander is not already on your system, developers may install it in their local directories.
TAU Commander will automatically download, configure and install TAU and other appropriate
utilities. When new options are activated within TAU Commander, it could take several minutes to
download or build any utilities required for the new configuration. This is a one-time event and the
next time that option is selected it will complete quickly. TAU Commander requires Python 2.7 or
newer. The following command will retrieve it for developers:

git clone https://github.com/ParaToolsInc/taucmdr.git

*Names and trademarks belong to their respective owners

https://github.com/ParaToolsInc/taucmdr.git

This will create a taucmdr directory. Select the installation directory use that when you run make
install then add the resulting bin directory to your path. On Linux this might be done with:

git clone https://github.com/ParaToolsInc/taucmdr.git

cd taucmdr

make install INSTALLDIR=<path>

export PATH=$PATH:<path>/bin

When this is completed you are ready to begin with TAU Commander. It is recommended to add the
taucmdr/bin to the environment setup each time you log in so that TAU Commander is always in your
path.

TAU Commander setup

The first step is to define a project. Let’s begin with one of the examples. From the taucmdr directory
moveto ./taucmdr/examples/mm. The easiest way to begin is to enter tau initialize or
simply tau init. This first initialization will take quite a bit of time. Not only is this command
creating a project it is also downloading and building the TAU Performance System® and associated
libraries that it depends on. Let this run and check for successful completion. When it completes it
displays the basics of the project — shown in five tables. This display can be shown at any time by
entering tau dashboard. An example of this is shown in Figure 2.

drmackay@Paratoolsbeaverton: ~/taucmdr/examples/mm

o= e e e R e R e +

| Applications | Measurements | # Experiments |
EEEERiEERERE:

~~~~~~~~~~ +
Wrap MPI |

====$

E + 0 + +
| | I I |
+ + 0 + +
| | I I |
+ + + + +
| | I I |
+ + + + +
| | I I |
+ + + + +

| (Paratoolsbeave , , sample)
e e memeecmccemecemememeeeeeem———-

(Paratoolsbeaverton, mm, sample)

drmackay@Paratoolsbeaverton:- cmdr/

Figure 2: Tau dashboard displayed dfter first project initialized.

*Names and trademarks belong to their respective owners


https://github.com/ParaToolsInc/taucmdr.git

Many parameters may be defined at initialization. For example, to define a project named myname
enter: tau init --project myname. To add additional projects to your system you may enter:
tau project create yourname. This creates a project called yourname. If you type tau
dashboard Tau Commander will show you the details of the active project (e.g. myname). To see
details of your new project yourname you must select it by entering tau project select
yourname. Now when you enter tau dashboard the details of project yourname will be
displayed. If you do this notice that project yourname did not default to any targets, applications or
measurements — these need to be added to the project through tau create commands. It is frequently
easier to define application parameters at initialization rather than editing later (fewer key strokes). For
example, if your application uses MPI and OpenMP you may initialize Tau Commander by entering:
tau init --project myname --openmp T -mpi T. Typical application parameters to
define at initialization are: CUDA, linkage (static/dynamic), MPI, OpenCL, OpenMP, pthreads,
SHMEM, and TBB. To get a full list of options for the Tau Commander version installed on your
system just type: tau application edit --help and a complete print out of options will be
printed.

Editing TAU Commander Applications

It is common to edit the parameters within a TAU Commander project. By default, TAU Commander
uses the name of the directory where it is initialized as the application name. This is the name of the
application within the TAU Commander project. The executable name may be entirely different. An
application name might be mm while the executable binary is a.out. This is just fine. If multiple
binaries are to be analyzed for performace they may be all be part of the current application or the
analysis of the different binaries can be kept in a different application. One can create a new application
with: tau application create <new application name>, or copy an existing
application with: tau application copy <existing application name>
<new_application name>. Applications can also be deleted or edited. Most common is editing
of an application property. This is easy to edit just type: tau application edit --<name of
application property> <setting (typically T or F)>. A list of application
properties that may be activated are: CUDA, linkage (static/dynamic), MPI, OpenCL, OpenMP,
pthreads, SHMEM, TBB. To get a full list options on your installations just type: tau
application edit --help and a complete print out of options will be printed.

Editing TAU Commander Measurements:

The chief considerations for measurement is type of data, quantity and how it is collected. A simple
profile may just show hotspots — where most execution time is spent. A more complete profile may
include callpath data showing sequence of what routine calls which routine. A trace gives specific
order of events including point to point transactions. The amount of data associated with each is
illustrated in Figure 3 below.

*Names and trademarks belong to their respective owners



Limited Loop  Callpath
Profile Profile Profile

O(TB)

Phase Trace
Profile

All levels support multiple metrics/counters

Figure 3: measurement options and size of data files associated with that option.

TAU Commander supports both profiling and tracing. To create a new measurement with one of these
options merely enter tau measurement create myprofile —--profileortau
measurement create yourprofile --trace. The data that appears in the profile or trace
may be gathered by one or more data measurement methods including sampling, source
instrumentation, or compiler instrumentation. The default is sampling, where TAU Commander will
use the symbols in the binary when built with -g to decipher code information. Source instrumentation
relies on the Program Database Toolkit (PDT) to add information to track and the last is utilization of
the compiler to instrument the source code. There are several TAU commands that can explicitly be
added to the code which is beyond the scope of this introductory manual. Those interested can find
more information in the TAU User Guide
(https://www.cs.uoregon.edu/research/tau/docs/newguide/index.html). The application section defined
several important parameters which may be active in the binary and thus can be activated. It is
important to specify which of those items are to be active in the measurement definition — these
include: OpenMP, CUDA, I/O, MPI and SHMEM. For example, for MPI this can be done by setting
the MPI Boolean to True with this command: tau measurement edit

<measurement name> --mpi T. Substitute measurement of interest in place of MPI T (e.g.
--cuda T).

TAU Commander Experiments
Create experiments by entering:

tau select [target] [application] [measurement]

The select command accepts the names of exactly one target, application, and/or measurement objects
given in any order. For example, the following commands are equivalent:

tau select my profile my target my measurement

tau select my target my profile my measurement

*Names and trademarks belong to their respective owners


https://www.cs.uoregon.edu/research/tau/docs/newguide/index.html

If the target, application, or measurement name can be implied then it may be omitted. For example, if
you have only one target and only one application in your project then only the measurement name
must be specified:

tau select my profile

The select command will name the new experiment based on the names of the selected objects. You
may rename the new experiment with the tau experiment edit command, or take full control of
experiment creation by explicitly specifying each parameter:

tau experiment create my experiment --application my application --
measurement my profile --target my target. The entities my_experiment,
my_application, my_profile as well as my_target must already be defined. The subsections above
discuss creating and editing those entities.

Build and Run

Now that the TAU Commander project is well defined you are ready to build your application and run.
Typically, this can be done by adding the taucmdr/bin directory to your path and then adding “tau” in
front of your usual compiler and link commands — that is “tau cc” or “tau f77”. It is easy to edit a
Makefile to add tau prefixes in front of compiler and link commands. When you build, the active
experiment or “Selected Experiment” defined in the Tau Commander project will determine the TAU
features activated during the build. The last line of the tau dashboard output will show the
selected experiment. Changing the selected experiment typically will require that you rebuild your
application binaries — depending on what changes. TAU Commander will remind you to rebuild your
binary executable.

Now that the project is well defined and you rebuilt your executable binaryj, it is ready to run. This is
done by preceding the executable binary with “tau”. So instead of simply . /a.out one would enter:
tau ./a.out. The binary a.out will be executed and the TAU Commander specified data will be
collected. This will become a trial.

Viewing Data

Enter tau show and TAU Commander will open up the appropriate display window to graphically
show the data of the selected trial. This will be the last trial collected with the active or selected
experiment. To see data for a different trial for this experiment just enter the trial number after show
(e.g. tau trial show O0). Please note that trial numbers begin with 0. The first trial is trial
number 0. If tau dashboard shows 3 trials those 3 trials are numbered 0, 1, 2. To show data for a
different experiment enter tau select <desired experiment>,thenenter tau show #
where # is the trial number of <desired_experiment> whose data you want to view graphically.

Examples

This section will illustrate several different experiments. The basis will be the sample code packaged
with TAU Commander in examples/sc15. You may use any code you like to reproduce similar views.

*Names and trademarks belong to their respective owners



Profile-hotspot
A basic hot spot profile is shown first.

Install TAU Commander and define path as shown in the beginning of this document. Then go to

taucmdr/examples/sc15/serial
Enter tau init

Enter make
Enter tau

./matmult

Enter tau show

TAU Commander automatically invokes paraprof. The view should be something like that shown in

Figure 4.

drmackay@drmackay-VirtualBox:~/taucmdr/examples/scl5/serial$ tau show

File Options Help

e Applications
¢+ IStandard Applications
¢+ O Default App
¢+ O Default Exp
¢+ @ 0/drmackay-VirtualBox-se
¢ TIME

- CRAFT-east (jdbc:postgresql://¢
-fdI3di (jdbc:postgresql://east0]

TrialField

Value

Name

0/drmackay-V...

0

F-\pplication ID
Experiment ID

0

Trial ID

0

CPU Cores

6

CPU MHz

2592.000

CPU Type

Intel(R) Core(...

CPU Vendor

Genuinelntel

CWD

/home/drmack...

Cache Size

6144 KB

File Options Windows Help

Command Line

./matmult

/home/drmack...

1

TAU profiles

drmackay-Virt...

2017-08-17T1...

10398824 kB

Metric: TIME
Value: Exclusive

Std. Dev.

Mean

Max

Min

node 0

Figure 4:Initial paraprof view from tau show.

Now select “windows” from the top menu bar and scroll down to “thread” and select “Bar Chart” in the

pop menu that appears as shown in Figure 5.

*Names and trademarks belong to their respective owners




aPro ome/drmacka d dr/fexample a Paratoo

File Options [Windows | Help

Metric: TIME | ParaProf Manager
Value: Exclusiy 3p Visualization
3D Communication Matrix

Std. Dev. || communication Matrix
Mean -
Max Function »
Min [ Thread ¥ Bar Chart
node 0 [ Function Legend Statistics Text
Group Legend Statistics Table
vent Call Graph
Group Changer Call Path Relations
Close All Sub-Windows ntext Event Windo
User it Bar art
User ent Statisti

243

“[Memory Size

|7034276 kB |

_ [P

| [P P Fppr—— 1

Figure 5: Thread options pop up menu.

Then select the top thread (n,c,t.0,0.0) in the box that appears as shown in Figure 6.

n,c,t 0,0,0 |

select | cancel

Figure 6: Final thread selection pop up box.

This will now display a list of functions and time spent in each one
like that shown below in Figure 7.

*Names and trademarks belong to their respective owners

. The view should be something



@ TAU: ParaProf: node 0 - /home/drmackay/taucmdr/fexamples/sc15/serial/.tau/serial/drmackay-VirtualBox-serial-sample/0

File Options Windows Help

Metric: TIME
Value: Exclusive
Units: seconds

2.39 | | .TAU application
1.119 [SAMPLE] compute [{/home/drmackay/taucmdriexamples/scl5/serial/matmult.c} {43}]
1.119 s .TAU application => [CONTEXT] .TAU application => [SAMPLE] compute [{/home/drmackay/ta
0.7 [ | [SAMPLE] compute_interchange [{/home/drmackay/taucmdr/examples/sc15/serial/matmult.c}
0.7 [l -TAU application => [CONTEXT] .TAU application => [SAMPLE] compute_interchange [{/home,
0.47 [ [SUMMARY] multiply [ {/home/drmackay/taucmdr/examples/scl5/serial/matmult.c}]
0.18 [i] [SAMPLE] multiply [ {/{home/drmackay/taucmdr/examples/sc15/serial/matmult.c} {32}]
0.18 ] .TAU application => [CONTEXT] .TAU application => [SUMMARY] multiply [ {{home/drmackay/t
0.149 []| [SAMPLE] multiply [ {/home/drmackay/taucmdr/examples/sc15/serial/matmult.c} {33}]
0.149 [ | .TAU application => [CONTEXT] .TAU application => [SUMMARY] multiply [ {/home/drmackay/t
0.141 [l [SAMPLE] multiply [ {/home/drmackay/taucmdr/examples/scl5/serial/matmult.c} {31}]
0.141 [{ .TAU application => [CONTEXT] .TAU application => [SUMMARY] multiply [ {/home/drmackay/t
0.05 || [SAMPLE] compute_interchange [{/home/drmackay/taucmdr/examples/scl5/serial/matmult.c}
0.05 [ .TAU application => [CONTEXT] .TAU application => [SAMPLE] compute_interchange [{/home,
0.042 || [SAMPLE] compute [{/home/drmackay/taucmdr/iexamples/scl5/serial/matmult.c} {42}]
0.042 || .TAU application => [CONTEXT] .TAU application => [SAMPLE] compute [{/home/drmackay/ta
0 | [CONTEXT] .TAU application
0 | .TAU application => [CONTEXT] .TAU application

Cl 1 I D

Figure 7: Bar chart - showing time spent in each function of thread 0.

In order to see callpath information select “Call Graph” or “Call Path Relations” instead of “Bar Chart”
as illustrated in Figure 5. The “Call Graph” option will provide a graphical interface with boxes and
arrows (you can pull on the text boxes in the graphics to make them legible). The “Call Path
Relations” options provides a textual list of routines with data showing which routines call which
routines and the number of times called.

3D Visualization

Another common view is a 3D visualization of each MPI rank and a metric (e.g. time) for each routine
it calls. To see this view begin by selecting the windows menu item as shown below in Figure 8.
Select the 3D Visualization option at the top just below Paraprof Manager. This will open the 3D
image shown in Figure 9. In Figure 9 there is one axis with a data entry line for each MPI rank (8 in
this case). Along another axis are the routines called by the program and along the third access is the
time spent in each of those routines. This data was collected on an oversubscribed condition — which
leads to imbalance in MPI routines which was expected. This view can be quite helpful in looking for
work/load balance issues with TAU Commander.

*Names and trademarks belong to their respective owners



File Options Help

@ Applications TrialField
¢ [ standard Applications

F Name 1/share/mnt/ =)
¢ [ Default App | [Application 1D o I
¢ [ Defau
@ 1l/s TAU: ParaProf: /mnt/share/1 = (=] x

Walue

@
File Options [Windows | Help

Metric: TIME | ParaProf Manager
Value: Exclusi{ 3p visualization

| 3D Communication Matrix
— Communication Matrix

Std. Dev.
Wean
Mang

Min

Function
Thread

node 0

node 1 Function Legend
node 2 Group Legend
node 3 User Event Legend

node 4 Group Changer

node 5 [0 . -

node 5 [ Close All Sub-Windows

node 7 | I ]

Figure 8: Window selection options with an MPI run

File Options Help

@ Applications TrialField Value
# ] Standard Applications Name 1/share/mnt/ -
¢ ] Default App Application D 0 I
¢ [ Defau
¢ @1fs
@
File Options Windows Help
Metric: TIME
Value: Exclusive
Std. Dev.
[l — il
Max —— |— 1 ]
Min
node 0
node 1
TAU: ParaProf: 3D Visualizer: /mnt/share/1 = o x
File Options Windows Help
4
k| ® Triangle Mesh
Bar Plot
Scatter Plot
Topology Plot
Height Metric =
Exclusive - | |TIME -
Color Metric
Exclusive - | |TIME -
<none=>
Function
a[n] 3
o]
Thread P
«[1] |5
Height value
Calor value
Scales | Plot | Axes | Color | Render
height: 0 0.084
seconds

color: 0 0.084

seconds

[

Figure 9: 3D visualization of 8 MPI ranks and routines called.

*Names and trademarks belong to their respective owners



Hardware counters with PAPI*

TAU Commander can also be configured to collect hardware events using PAPI and then create
customer metrics based on those collections. One example is shown here of setup and configuration.
Please check whether papi is already installed on your system. By default TAU Commander will
download and install PAPI. If it is already on your system (please check) you can use the PAPI
libraries already installed. On the system used in this illustration papi is installed as linux modules and
is accessed by loading the appropriate module (module load papi/5.4.3). To use the already
installed PAPI module let TAU Commander know where it is — on the system for this example that
would be /packages/papi/5.4.3 (this directory contains the bin and lib subdirectories as well as include,
man and chare). This example was done by the following — first create a new measurement to include
PAPI events. This was done by entering: tau measurement copy sample samplehwc.
Then inform TAU Comammander where to find the PAPI utilities: tau target edit

<target name> --papi /packages/papi/5.4.3. Nextis to define PAPI events. To see
a list of PAPI events you may run papi avail. In this example the first PAPI event is selected:
PAPI_L1_DCM. To select this metric enter: tau measurement edit samplehwc --
metrics PAPI L1 DCM. Next the executable binary is rebuilt and run: tau ./matmult and
displayed: tau show. This will invoke paraprof in a view similar to that shown for the basic hotspot
profile. This new display is shown in Figure 10, notice that there is now additional items in the main
view with green colored bullets next to it for the PAPI events (TIME and PAPI_L1_DCM). Frequently
it is desired to derive a metric based on the events collected. To derive an event select the options
menu from the main ParaProf window and a pop up menu appears, just select the top option “Show
Derived Metric Panel” and it will appear as shown in Figure 11. This creates a new item as a green
bullet for the derived metric below the papi events. Double clicking on one of the green bullets will
open a new window based on that papi event or derived metric. The same options are available for this
new window just as for a profile hotspot. Figure 12 shows the bar chart for the PAPI event
PAPI_L1_DCM.

TAU: ParaProf Manager
Options | Help
[ Show Derived Metric Panel [ TrialField
Apply Expression File
Re-Apply Expression File
T @ ogodzil

\dows Help

@ TIME 5

@ FAFILL_DCM U 1200.000

Intel{R} Xeon[R) CPU E5-2620 v3 @...| ~
nuinelntel

Storagefuser. Kayftaucmdrie
Cache Size 15360 KB

d Li ‘matmult exe
IE{E:utab\e storagefuser: Kay/taucmdrie
File Type Index

1
e Type Name profiles
[File Type N TAU profil
H odzill

ostname zila
|Local Time 2017-08-25T1155:42-07.00

Memory Size 65845888 kB

|Node Mame qodzilla

[0S Machine x86 654

[0S Narre Linux

elease 26.32-696.630/6.x856 64

ersion #1 SMP Fri jun 30 13:24:18 EDT 2017
rting Timestamp 1503687342133875

U Architecture default

U Config -tag=195b9a89 -arch=xB6 64 -cc

U Hakefile storageuser: ayftaucmd;
WAY

U BFD LOOKUP
U CALLPATH

Figure 10 View after collecting PAPI* events.

*Names and trademarks belong to their respective owners



TAU: ParaProf Manager
File Options Help

@ rpplications MetricField
¢ [ Standard Applications

¢ [ Default App ieation
¢ [ Default Exp IE
¢ @ 0ygodzilla-mm-samplehwc/mynam
@ TIME

xperiment 1D
Trial 1D
Metric ID idows  Help

@ PAPI L1 DCM

[l I

Expression: [="PAPI_LL_DCM'/TIME|

IS 2 = | "

Figure 11 Derived Metric Panel shown at bottom of ParaProf Manager window.

TAU: ParaProf: node 0 - fstorage/users/dmackay/taucmdr/examples/mm/.tau

File Options Help File Options Windows Help S

@ Applications Metric: PARI_L1_DCM
¢ [ Standard Applications value: Exclusive
% [ Default App Units: counts
¢ [J Default Exp
0/godzill

‘m:l
g 173638 [ ] TAU application EEEEE |
@ TIME 1.0665E8 [saMPLE] compute [{/hemezusers/dmackay/taucm Hlsl [ 1
@ PAPI L1 DCM LOG65ES — TAU application == [CONTEXT] .TAU application = Skl T 1
@ 4512767 [ | SUMMARY ] multiply [ {/home/usersjdmackaytaucr
@ 3.5627E7 [ [SAMPLE] multiply [{/homefusersidmackayftaucmd
3.5627E7 [Emmmad TAU application => [CONTEXT] .TAU appliication = cmdrrexamples/mmjmatmult ¢} {9931
1.0502E7 @ [SAMRLE] compute [{/homefusers/dmackay/taucm h => [SAMPLE] compute [{/home/users/dmackaytaucmdriex
1.0502E7 [ TAU application => [CONTEXT] .TAU application = cmdrfexamples/mmimatmuft.c} {101}]
9967564 [ [SAMPLE] multiply [{/home/users/dmackay/taucrd = [SAMPLE] compute [ [fhomefusersidmackaytaucmdrfex
9967564 [] .TAU application == [CONTEXT] .TAU application =
9687140 [ [SAMPLE] compute_interchange [{home/users/dm mdrfexamplesfmmymatmult.c} {61}
9687140 [ TAU application => [CONTEXT] TAU application = == [SUMMARY] multiply [{fhome/users/dmackaytaucmdre
534418 | [SAMPLE] compute_interchange [ {jhore/usersicim ucmdirexamples/mmmatmutt.c}1
534418 | TAU application == [CONTEXT] .TAU application = mdrexamplespmmjmatmult.c} {591
531797 | [SAMPLE] muttiply [{/homejusers/dmackay/taucmd h => [SUMMARY] multiply [{homejusersfdmackayftaucmdrfe
531797 | TAU application => [CONTEXT] TAU application = ‘dmackaytaucmdr/examples/mmymatmult.c} {122}]
0 | [CONTEXT] TAU application n => [SAMPLE] compute_interchange [{thome/usersdmacka:
0 | TAU application == [CONTEXT] TAU application dmackayjtaucmdrfexamples/mmymatmult.c} {120}
n => [SAMPLE] compute_interchange [{fhome/users/dmacka:
mdr mult.c} {5071
n == [SUMMARY] multiply [{fhomejusersydmackaystaucmadrie

EBxpressions |
() N

n

Figure 12 Display of PAPI event PAPI_L1_DCM

Traces

Another popular format is traces so two examples are presented. The first example uses the default
otf2 format. This example was generated by first entering: tau init --mpi T -trace otf2
(otf2 is optional as it is the default trace format in tau commander). After initializing tau select
trace was entered the Makefile was modified to use “tau mpic++” and “tau mpicc” instead of
“mpicxx” and “mpicc”. The binary (minife) was built and executed (tau mpirun -np 8 ./miniFE.x 120
120 120). The command tau dash will show the trial with the data collected in otf2 format. If
vampir is on the same system you can enter tau show and this will invoke vampir to display the
results . Otherwise you may export the files to view on another system (see section on trial export).
TAU Commander will not automatically install Vampir. Figure 13 shows the data collected. In this
view within Vampir the following selection was made — File->preferences->appearance-> (expand MPI
events and select all) right click and select random colors then click on apply and close. This provides
different colors for different MPI tasks — Allreduce, Wait, Send, . . .. TAU Commander was also
configured with callsite 1 for this data collection. In Figure 13 the different MPI events are visible as
well as the point to point message MPI_Send events from one MPI rank to another. As of the writing

*Names and trademarks belong to their respective owners



of this document TAU Commander needs to be configured to use a nightly build of TAU in order to

produce the otf2 traces. Expect this to change very soon.

ErEwROoTIERLBE B AV

20 Sampir

| 1' 022628 s]o22706 &'
L 7761051

thread 0.0
thread 01
thread 0:2

thread 03 |

thread 0:4
thread 0:5
thread 0.6
thread 0.7

02263 5 0.2264 s

WP Allrediuce()
vt

"] MR_Allreduce)

|71 MPI_AlIre duce ()
T 1

022655

MPI_Allreduce(y 1117

meline
0.2266 5

"TMP_Allreducel)
vq T
Al

02268 0.2269 s

MPI_Allreduce()
Pl_Allreducel()
T"MPL_Allireduce()

mectell

1] vpi_Allreduce ()

02270 s

Function
All Processes, Accumulated Exclusive Time per Function

2.5ms 20ms
265ms
2114 ms

WP _Allreducel)

int main(int, c.. {86,1}-{188,1}]

MPI_Wait()

84 ps [ll MP_send()
40 ps [| miniFE: timer t.

33 ps | MPI_Irecv()
29 ps [] [CALLSITE] mini
23 s | [CALLSITE] MPI
22 j1s | [CALLSITE] MPI
20 s | [CALLSITE] MPI
15 s | [CALLSITE] MPI
7 s | [CALLSITE] MPI

11L11-{127.11

lercpp} {28831
er.cpp} {288}
er.cpp} {288}
er.cpp} {288}
er.cpp} {2881
er.cpp} {2881

3 ps | MP_Comm_size()

= | Traceinfo X

Property Value

File Jstorage/users/dmackay/4otf2/8-sitefOftraces.otf2
Creator TAU

Version 21

Number of Processes 8

Timer Resolution 1ps

File Substrate POSIX

Trace Compression  NONE

Trace ID 56c5fccca51041d4

TAU_CALLSITE

TAU_USER

~ M wp
MPI_Comm_size()
MP{_Comm_rank()
MPLinit()
MPI_Finalize()
MPL_Allgather()
MPI_Bcast()
MP_Allreducel)

W MP_Reduce()
MPI_Irecv()
MP_Wait()
MPI_Send()
M Monitor

Figure 13: Vampir display of otf2 data collected with TAU Commander.

The alternate format for traces is slog2. This example was generated by first entering: tau init -
-mpi T --trace slog?2. If TAU Commander is already initialized and no traces have been
collected yet you may edit the trace measurement, otherwise it is easier to copy a trace setting using
commands like this: tau measurement copy trace traceslog2 followed by: tau
measurement edit traceslog2 --trace slog2. Afterinitializing tau select
trace (or traceslog2) was entered the Makefile was modified to use “tau mpic++” and “tau
mpicc” instead of “mpicxx” and “mpicc”. The binary (minife) was built and executed then tau show
was run to display the trace. TAU Commander automatically installs and invokes jumpshot for
viewing SLOG?2 trace files without any extra configuration options. The image in Figure 14 is a
zoomed in region of the trace from running minife on 2 MPI ranks. Please note that the SLOG2 traces
are 3 to 4 times larger than the otf2 traces and SLOG?2 and jumpshot do not scale well beyond 1024
processes.

*Names and trademarks belong to their respective owners



Jumpshot-4 1y = <) 10434

© © © TimeLine : tau.slog2 <lIdentity Map>

‘ N B ¢[v]alagaal ®ne e =
N Lowest / Max. Depth 4 |Zoom Level Global Min Time View Init Time View Final Time. Global Max Time Time Per Pixel 4Row |w
| e ireducen CTER | 1 000 osnasss o cavzsaoes aosrs o bovonoras EY i e
5

|71 _zcastt = TimeLines -

MPI_Comm_rank()

[/ v1_comm_sizen)

|7 _Finaize0

| i)

D MPI_Irecv()

!MPLR@du(e(]
n

d()

MPLWalt()

2 O 8 e

e

[ v _etement +vaML_Element::addiconst §
[ vamt_Etement +vamL_Element::addtconst
[| vAML_Element +vaML_Element::addtconst
YAML_Element *YAML_Element::add{const §
I v+ _etement svaML_Element::addiconst §
[I| v+_Etement #vaML_Elemert:: get(const
| i timer_type miniFEzmytimer() [{myti
!s(d :string YAML_Doc::generateYAML() [{Y4
g std::string YAML_Element::convert_double_|
) stdizstring YAML_Element:;convert_int_to_s
g stdisstring YAML_Element:;convert_long_lor]
g std:zstring YAML_Element::convert_size_t_td
stak:string YAML_Element::print VAML(stck: i

[ void Mantevo::read_args_into_string(int, <H

—l
Kl

Al

assembling FE
imposing Dirichlg
imposing Dirichlg
making matrix indices
Starting CG solver
Initial Residual =
Iteration = 20
Final Resid Norm: 2.069
Trial 0 produced

== END Experiment

Experiment: drmad
Command: mpirun
Current working d
Data size: 469.1K
drmackay@drmackay-Virtugrees
Merging 4 TAU tr boscess
Completed in 0.03K D
Converting TAU trace files to SLOG2 format...

Figure 14: MPI Trace showing MPI_Allreduce and MPI_Send commands.

|
o.0z0284 o.0z02e2 o.020272 0030276

Memory usage

Memory usage is a common metric of interest. Tau Commander can help developers track this too.
Developers can create a new measurement or copy an existing measurement and edit it. The options to
activate are heap-usage and memory-alloc. Activation would be done like this: tau measurement
edit profile --heap-usage T --memory-alloc T. If you already have a
measurement named profile if not, please substitute your measurement name in place of “profile”.
Rebuild (make or tau g++ file.cp) and run as normal (tau ./a.out)and enter tau show. This
time select “Context Event Window” from the menu shown in Figure 5 (note in Figure 5 this option is
greyed out as an invalid option — when you set heap-usage and memory-alloc to True and run, this
menu option will no longer be greyed out as it becomes a valid option). The display will be something
like that shown in Figure 15.

*Names and trademarks belong to their respective owners



TAU: ParaProf: Context Events for: node 0 - /home/drmackay/taucmdr/examples/sc15/serial/.tau/serial/drmackay-VirtualBox-serial-profile /0
File Options Windows Help
Name v \ Total NumSa... [ MaxValue | MinValue MeanVa... | Std. Dev.

= int main(int, char *) C [{matmult.c} {90,1
! [GROUP=MIN_MARKER] Heap Memory Usec

[GROUP=MIN_MARKER] Heap Memory Usec

[GROUP=MIN_MARKER] Heap Memory Usec

[GROUP=MIN_MARKER] Decrease in Heap I

[GROUP=MAX_MARKER] Increase in Heap b 1,912.938

[GROUP=MAX_MARKER] Heap Memory Use 20

[GROUP=MAX_MARKER] Heap Memory Use 20

[GROUP=MAX_MARKER] Decrease in Heap 2,052

Increase in Heap Memory (KB) 12,168.938

Heap Memory Used (KB) at Exit 625,129,... 6,063.743

Heap Memory Used (KB) at Entry 625,130,... 6,063.75

ONNOCOOOOCC

Heap Memory Used (KB) 9,474,084 3,078

Heap Free 6,303,744 4,096

Heap Allocate 6,303,744 4,096

Decrease in Heap Memory (KB) 12,849.828 8.312
=.TAU application

Figure 15: Memory display for profile collection.

10

Collecting IO is similar to collecting memory information. The first step is to activate io as a
measurement parameter. This is done by: tau measurement edit profile --io Tortau
measurement edit trace --io T. Once again use your measurement names — profile and

trace are used here as these measurement definitions are created by default. Rebuild the executable
binary and run to create a new trial. Now enter tau show. The results should be similar to what is
shown below in Figure 16

*Names and trademarks belong to their respective owners



File Options Help

e Applications : TrialField Value
¢ c3Standard Applications Name 0/drmackay-V... |~
+ 3 Default App Application ID 0

3

" File Options Windows Help

-3 CR/Metric: TIME
MELEUALIEEIR ' = - 1L paraProf: Context Events for: nade 0 - fhome/drmackay/codes/po ST ey —
std. D File Options Windows Help
t 'M:av'; Name: [ Total [NumSamples | MaxValue | MinValue | MeanValue | Std.Dev. |
Max [~ -TAU application
Min | Bytes Written 2,307,484 155,107 8,204 1 14.877 255.38
node 0 Bytes Written <file=fem2d_poisson_rectangle 580,842 71 8,195 7,241 8,180.873 112.338
Bytes Written <file=fem2d_poisson_rectangle 370,713 46 8,199 1,957 8,058.978 909.635
Bytes Written <file=fem2d_poisson_rectangle 289,815 36 8,204 2,896 8,050.417 871.279
Bytes Written <file=stdout> 1,066,114 154,954 56 1 6.88 5.159
Write Bandwidth (MB/s) 10,737 2,731.667 0.031 28.56 192.403
g Write Bandwidth (MB/s) <file=fem2d_poisson_ 71 2,731.667 1,024.25 1,852.984 329.171
{ Write Bandwidth (MB/s) <file=fem2d_poisson_ 46 2,049.5 178.217 1,214.557 449.516
Write Bandwidth (MB/s) <file=fem2d_poisson_ 36 2,051 356.696 1,392.799 442.052
Write Bandwidth (MB/s) <file=stdout> 10,584 53 0.031 6.526 5.159
[GROUP=MAX_MARKER] Bytes Written 8,247 2 8,198 49 4,123.5 4,074.5
[GROUP=MAX_ MARKER] Bytes Written <file=s 49 1 49 49 49 0
[GROUP=MAX_MARKER] Write Bandwidth (MB/ 3 1,170.143 178.217 554.569 438.862
[GROUP=MAX_MARKER] Write Bandwidth (MB/ 2 1,170.143 315.346 742.745 427.398
[GROUP=MAX_MARKER] Write Bandwidth (MB/ 1 1,365.167 1,365.167 1,365.167 0
[GROUP=MAX_MARKER] Write Bandwidth (MB/ 2 53 23 38 15
ame [GROUP=MIN_MARKER] Bytes Written 1 1 1 1 1 0
[GROUP=MIN_MARKER] Bytes Written <file=fe 1,957 1 1,957 1,957 1,957 0 _
[GROUP=MIN_MARKER] Bytes Written < =fe 2,896 1 2,896 2,896 2,896 [\]
drmacka [GROUP=MIN_MARKER] Bytes Written <file=st 1 1 1 1 1 0
[GROUP=MIN_MARKER] Write Bandwidth (MB/s 4 1 0.053 0.393 0.368
alBox-p [GROUP=MIN_MARKER] Write Bandwidth (MB/s 4 1 0.053 0.393 0.368
0 0 + fwrite()
ample Write Bandwidth (MB/s) <file=stdout> 7,018 53 0.031 6.063 5.123
Write Bandwidth (MB/s) 7,018 53 0.031 6.063 5.123
Bytes Written <file=stdout> 688,169 100,001 56 1 6.882 5.169
Bytes Written 688,169 100,001 56 1 6.882 5.169
[GROUP=MIN_MARKER] Bytes Written <fil 2 2 1 1 1 0
drmackavad [GROUP=MIN_MARKER] Bytes Written <file= 1 1 1 1 1 0
[GROUP=MIN_MARKER] Bytes Written 2 2 1 1 1 0
[GROUP=MIN_MARKER] Bytes Written : fwrit 1 1 1 1 1 0
[GROUP=MAX_MARKER] Bytes Written <file= 98 2 49 49 49 0
[GROUP=MAX_MARKER] Bytes Written <file= 49 1 49 49 0
[GROUP=MAX_MARKER] Bytes Written 98 2 49 49 0
b [GROUP=MAX_MARKER] Bytes Written : fwril 49 1 49 49 0
[GROUP=MIN_MARKER] Write Bandwidth (ME 8 1 0.053
[GROUP=MIN_MARKER] Write Bandwidth (ME 4 1 0.053
I [GROUP=MIN_MARKER] Write Bandwidth (ME 8 1 0.053
[GROUP=MIN_MARKER] Write Bandwidth (ME 4 1 0.053
[GROUP=MAX_MARKER] Write Bandwidth (M| 4 53 23
— j i b ) 53 b

Figure 16: Display of 10 profile collected with Tau Commander.

ParaTools encourages the reader to continue to explore the capabilities of TAU Commander. The
wealth of information provided will assist developers identify bottlenecks and see where they can tune
their software to improve performance.

See:
TAU Commander Quick reference card

*Names and trademarks belong to their respective owners



